Using fuzzy logic to improve a clustering technique for function approximation

نویسندگان

  • Alberto Guillén
  • Jesús González
  • Ignacio Rojas
  • Héctor Pomares
  • Luis Javier Herrera
  • Olga Valenzuela
  • Alberto Prieto
چکیده

Clustering algorithms have been applied in several disciplines successfully. One of those applications is the initialization of Radial Basis Function (RBF) centers composing a Neural Network, designed to solve functional approximation problems. The Clustering for Function Approximation (CFA) algorithm was presented as a new clustering technique that provides better results than other clustering algorithms that were traditionally used to initialize RBF centers. Even though CFA improves performance against other clustering algorithms, it has some flaws that can be improved. Within those flaws, it can be mentioned the way the partition of the input data is done, the complex migration process, the algorithm’s speed, the existence of some parameters that have to be set in order to obtain good solutions, and the convergence is not guaranteed. In this paper, it is proposed an improved version of this algorithm that solves the problems that its predecessor has using fuzzy logic successfully. In the experiments section, it will be shown how the new algorithm performs better than its predecessor and how important is to make a correct initialization of the RBF centers to obtain small approximation errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms

UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...

متن کامل

ADAPTIVE BACKSTEPPING CONTROL OF UNCERTAIN FRACTIONAL ORDER SYSTEMS BY FUZZY APPROXIMATION APPROACH

In this paper, a novel problem of observer-based adaptive fuzzy fractional control for fractional order dynamic systems with commensurate orders is investigated; the control scheme is constructed by using the backstepping and adaptive technique. Dynamic surface control method is used to avoid the problem of “explosion of complexity” which is caused by backstepping design process. Fuzzy logic sy...

متن کامل

Improving Clustering Technique for Functional Approximation Problem Using Fuzzy Logic: ICFA Algorithm

Clustering algorithms have been applied in several disciplines successfully. One of those applications is the initialization of Radial Basis Functions (RBF) centers composing a Neural Network, designed to solve functional approximation problems. The Clustering for Function Approximation (CFA) algorithm was presented as a new clustering technique that provides better results than other clusterin...

متن کامل

A new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy

In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...

متن کامل

Clustering Methods in Neuro - Fuzzy Modelling Klasteriz Cijas Metodes Neuro-fuzzy Model Šan

A neural network can approximate a function, but it is impossible to interpret the result in terms of natural language. The consolidation of neural networks and fuzzy logic in neurofuzzy models provides learning as well as readability. This paper aims at modeling the input-output relationship with fuzzy IF-THEN rules by using fuzzy clustering technique. The main difference between fuzzy cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2007